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Abstract 

Locally nilpotent derivations of the polynomial ring in n variables over the complex field, 

algebraic actions of the additive group G. of complex numbers on C”, and vector fields on C” 

admitting a strictly polynomial flow, are equivalent objects. The polynomial centralizer of the 

vector field corresponding to a triangulable locally nilpotent derivation is investigated, yielding a 

tiangulability criterion. Several new examples of nontriangulable Ga actions on C” are presented. 
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1. Introduction 

Every polynomial derivation 6 = XI, pia/&, pi E C[X,, . . . ,xn] = C[X], corresponds 
to the autonomous polynomial differential equation (vector field P) i = P(x) in C”, 
where x = x(t) has its values in C”, and P(X) = (PI,. . . , p,,). We will not distinguish 
between the notions of “differential equation” and “vector field” and use the terms 
synonymously. The derivation is locally nilpotent provided for each Q E C[X], some 
power of 6, depending on Q, annihilates Q. This condition holds if and only if the 
differential equation has a strictly polynomial flow (i.e. admits a general solution which 
is polynomial in t). Moreover, in this situation, the assignment or(Q) = exp(tb)(Q) 
gives an algebraic action of the additive group of complex numbers as automorphisms 
of C[X] and dually of C” [7]. 

The requirement that the general solution be polynomial in t distinguishes strictly 
polynomial flow vector fields from polynomial flow vector fields as investigated, for 
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instance, in [2]. It is proved there that polynomial flow vector fields correspond to 

locally finite derivations. 

One consequence of the Jung-van der Kulk theorem (see for example [l]) is that 

all actions of G, on C[xr,xz] are triangulable. Triangulability of G, action on C[X] 

means that there is a coordinate system (~1,. . . , u,} with respect to which the group 

action has the form at(ui) = ~1, a,(ui) = ui + Qi, with Q; E C[ui,. ..,ui-i] for i > 1. 

The corresponding conditions on the derivation and vector field are easily worked out. 

A central question about the structure of the group of polynomial automorphisms 

of C” is whether this group is generated by the triangular and linear automorphisms. 

The answer to this question is unknown except for the case n = 2, and several authors 

have approached this problem by investigating the degree to which embeddings of G, 

in this group are triangulable. Bass [l], Popov [9], and Daigle-Freudenburg [4] have 

given examples of nontriangulable G, actions on C3. The Bass and Popov examples 

all have the form cf = exp(tQ@, where 6 is a (necessarily triangulable) derivation of 

Cbl , . . .,x,1 defined by a nilpotent linear endomorphism of the complex vector space 

spanned by {xi , . . . ,xn} and Q is a suitably chosen element of the kernel of the deriva- 

tion. In these cases nontriangulability is demonstrated by analyzing the singularities 

of the fixed point set of the group action. The Daigle and Freudenburg examples are 

substantially different in that they have nonsingular fixed point sets. 

The methods presented here utilize the Lie algebra structure on the vector space of 

derivations of C[xi , . . . ,x,1 (equivalently the Lie algebra of polynomial vector fields 

on C”). In particular we consider the centralizer of a given vector field, a structure of 

central importance in S. Lie’s fundamental work on differential equations. As will be 

seen, this structure enables one to demonstrate nontriangulability of a large class of 

polynomial vector fields in a completely clear and elementary way. 

2. Generalities on vector fields and centralizers 

Let 6 be a derivation of C[X] and P the corresponding vector field. The Lie deriva- 

tive of a rational function 4 E C(X) with respect to P, written Lp(4), is equal to h(4), 

where 6 has been extended to rational functions in the obvious way. A semi-invariant 

for P is a function p satisfying Lp(p) = $11 for some polynomial $, and a first in- 

tegral of P is a constant (i.e. element of the kernel) of 6. The following assertions 

are mostly well known, and are straightforward consequences of local nilpotency and 

unique factorization in C[X] (see [lo] for example). 

Remark 2.1. (1) If f = P(x) with P(x) = (PI,. . . , pn) has a strictly polynomial flow, 

then the stationary points of the flow are exactly the common zeros of the polynomials 

{P l,...,Pn). 

(2) Every semi-invariant of a strictly polynomial flow vector field is a first integral. 

(If Lp(p) = $11, the associated action of the additive group as automorphisms of C[X] 

will satisfy c&L) = ~rp(X,t), for some polynomial p. Unique factorization in C[X] 
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shows that p(X, a) E C for all complex numbers IX. Thus p E C, and the assignment 

t H p defines a character of the additive group, forcing p = 1. (I.e. L&L) = $p forces 

MP) = 0.) 
(3) Every rational first integral of P is a ratio of polynomial first integrals. (Apply 

the quotient rule and assertion 2.) 

(4) Let 6 = Cy=, gia/aXi and p E C[X]. Then ~6 is locally nilpotent if and only if 

6 is locally nilpotent and ,U is in the kernel of 6. (I.e. PG admits a strictly polynomial 

flow iff G does and p is a first integral of G.) 

Locally nilpotent derivations 6 as above with gcd{gi} = 1 have been termed primitive 

(e.g. [4]). As in the remark, any locally nilpotent derivation is a multiple of a primitive 

one by a first integral, and we will refer to differential equations and vector fields as 

primitive analogously. 

A differential equation i=P(x) (equivalently derivation Cy=, pia/&;) is said to be 

triangular provided p1 = 0 and for i > 1, pi E C[XI, . . . ,x~_~]. It is said to be trian- 

gulable if there is a polynomial automorphism of C” which transforms the differential 

equation to a triangular one, and rationally triangulable if there is a birational trans- 

formation of C” for which the transformed derivation has the form Cy=, qia/aXi with 

qi=O,andfori>l,qiEC(xi ,..., xi-t ). (See [6] for results on rational triangulability.) 

For any F E C(X)n denote the n x n Jacobian matrix of F by DF. If G = (91,. . . , g,)T 

is any rational map, DF . G denotes the rational map x -+ DF(x) . G(x), and [G, F] = 

DF.G-DG.F. 

Note that any derivation of C[X] (resp. C(X)) can be written uniquely as ‘& 

f;:a/ax~, with A E C[X] (resp. J;: E C(X)). Let F =(f,, . . . ,fn)T, and denote this deriva- 

tion by 6~. Given derivations SF and 66 their commutator [Bo, 6~1 is again a derivation, 

hence of the form 6~. Once checks easily that H = [G,F]. 

Definition 2.2. For a derivation 6 of C[X], its polynomial (resp. rational) centralizer 

%‘P0i(8) (resp. %?,.&a)) is the collection of derivations p of C[X] (resp. C(X)) for 

which [p, 61 = 0. 

In terms of vector fields, the definition becomes 

Definition 2.2’. For a polynomial vector field f = F(x), its polynomial (resp. ratio- 

nal) centralizer Vpol(F) (resp. ‘X,.&F)) is the collection of polynomial (resp. rational) 

mappings G for which [G,F] = 0. 

Since each 6 is of the form SF for some F, there is no ambiguity in identifying 

Q&t(b) with 5&,1(F), similarly for the rational centralizers. 

The following observations about polynomial and rational centralizers of a locally 

nilpotent derivation 6, (strictly polynomial flow vector field i = F(x)) are common 

knowledge and easily verified: 

1. %‘&F) and %Tpol(F) are Lie algebras over C. 
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2. VPol(F) is a module over the kernel of LSF (= ring CIXIGa of invariants of the 

associated Ga action on C&Y] = ring of polynomial first integrals of the vector field). 

3. qrat(F) is a vector space over the field of G, invariants (=field of rational first 

integrals). 

4. %ZPol(F) is not a Lie algebra over CIXIGa, since [,uG,F] = &(p)F + p[G,F] = 

dG@)F (= LG@)). 

Lemma 2.3, Let p,gl,. . . , g,, E C[x,, . . . ,x,,] be relatively prime, and :G : C” + C” 

the so determined rational function. Then ;G is in the centralizer of the differential 
equation 1 = F(x) with strictly polynomial flow if and only if G E ‘8,,ol(F) and p is 
a first integral of i = F(x). 

Proof. Assume that ;G is in the centralizer. Then 

0 = [F, ;G] = +(p)G + ;[F, G] 

yields ,u[F, G] = L&)G. But ,u and gi relatively prime shows that L&) is a multiple 

of p, forcing L&) = 0. 

The other direction is obvious. 0 

A similar argument proves 

Lemma 2.4. Let ,u,gl,. . .,gn E C[x,,. . . , xn] with the gi relatively prime and i = F(x) 

a difSerentia1 equation with strictly polynomial flow. Then pG E WP,l(F) if and only 

if G E %&l(F) and L&p) = 0. 

The next lemma concerns the behavior of rational centralizers under changes of 

variables. Note that if @ : C” + C” is birational, then the change of variables y = 

Q(x) transforms the differential equation X = F(x) to j = F*(y), where F*(@(x)) = 
D@(x)F(x). In terms of derivations, 8~ = [D@(x)]-‘BF-~Q. For a rational map G : 

C” -+ C” define G@(x) = [D@(x)]-‘G(@(x)). With these notations, the following 

lemma is clear. 

Lemma 2.5. The assignment G H G @ defines an isomorphism from qrat(F*) to 

gr&F). If @ is a polynomial automorphism of C”, then we obtain an isomorphism 

from g&F*) to gPol(F). 

The last lemma of this section, although nearly obvious, provides the crucial trian- 

gulability criterion. 

Lemma 2.6. Let i = F(x) be triangulable. Then there exists a G E VPoi(F) satisfying 
(1) G has strictly polynomial pow and 
(2) G has no stationary points. 
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Proof. By the previous lemma we may assume that i = F(x) is triangular, in which 

case G = (0,. . . , 0,l) satisfies the assertion. 0 

Together with a classical result on the structure of the automorphism group of a 

polynomial ring in two variables over the complex field, the lemma provides a necessary 

and sufficient condition for triangulability. 

Theorem 2.7. A locally nilpotent derivation 6~ of C[X~,X~,X~] (strictly polynomial 
JEow vector field li- = F(n) on C3) is triangulable tf and only tf gPpol(F) contains 
a locally nilpotent derivation (polynomial vector jield) for which the associated G, 
action is conjugate to a translation (whose flow can be straightened polynomially). 

Proof. One direction is provided by Lemma 2.6. For the other direction, assume that 

(O,O, 1) E gPol(F). A simple computation reveals that F(x) = (fi,fz, f3) where all 

fi E C[xi,xz]. Since i = F(x) has strictly polynomial flow, so does the vector field 

(j-1, f2 ) defined on C2. As a consequence of the Jung-van der Kulk theorem [ 11, the 

latter vector field is triangulable. 0 

Remark 2.8. Triangulability of a locally nilpotent derivation is equivalent to the trian- 

gulability of the G, action it generates, i.e. simultaneous triangulability of all crI, t E C. 
Moreover, if ca is triangulable for some a # 0, then crI is triangulable for all t. Indeed, 

{b E C: ob is triangulable} is an algebraic subgroup of G,, hence the trivial subgroup 

or all of G,. 

3. Popov’s criterion 

Popov’s triangulability criterion [9] states that if a strictly polynomial flow vector 

field is triangulable, then its set of stationary points is a cylindrical variety, i.e. iso- 

morphic to the product of some affine variety with a line. In all the examples of 

nontriangulable vector fields in that paper, the failure of the varieties of stationary 

points to be cylindrical is due to the presence of isolated singularities. A generalization 

of this aspect of the criterion is given by 

Proposition 3.1. Let X = F(x) have strictly polynomial _Pow, F # 0, and u a poly- 
nomial first integral of i = F(x) for which D,u vanishes at an isolated point, Then 
1 = n(x)F(x) is not triangulable. 

Proof. Assume that X = u(x)F(x) is triangulable, and G is as in Lemma 2.6. From 

[G,,uF] = 0 we obtain L&L) = 0. The set of singular points of p (i.e. those points 

where the Jacobian vanishes) is invariant for the differential equation f = G(x) [12, 

Proposition 3.111. But then an isolated singular point of p is a stationary point for 

X = G(x), a contradiction. 
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Examples 

1. 

2. 

3. 

4. 

5. 

4. 

(Bass-Nagata [l]) x = (x2’ - 2x1x3)(0,xt,x3). The point (O,O,O) 

singularity of (x,” - 2x1~3). 

is an isolated 

i = (xi -2x1x3 + l)(O, x1,x2). The argument of [9] does not apply here, because the 

variety of stationary points is nonsingular. However, the proposition again applies 

with the point (O,O, 0) to show nontriangulability. 

x = (xix4 - ~2x3 + 1) (0,x1,0,x3). Again nonsingularity of the variety of stationary 

points precludes the use of Popov’s criterion, but the isolated singular point of 

(xix4 - ~2x3 + 1) at the origin and the proposition imply nontriangulability. 

x = [1+(xix~-~~~3)~](O,xi,O,x3). Here the set of singular points of l+(xixq--x2~3)~ 

is the hypersurface defined by (x1x4-~2x3); as such it has no isolated singular points. 

However, the variety of singular points is an invariant set for the differential equation 

and has an isolated singularity at the origin. Since this point is stationary for any 

centralizer element by [12], Lemma 2.6 yields nontriangulability. 

1 = ((x,’ - 2xix3)xi + 1)(0,x1,x2). Here the fixed point set consists of the (disjoint) 

union of the line xi = x2 = 0 and the smooth surface (xi - 2x1x3)x1 + 1 = 0. Thus 

Popov’s method does not apply. Neither does the method of Proposition 3.1, since 

D((xz-2x1x3)x1+1) vanishes only along the line x1 = x2 = 0. However, the methods 

developed in the next section show that this example is also nontriangulable. 

Popov actions 

The locally nilpotent derivations corresponding to the examples closing the previous 

section have the form 6 = f 8, where the derivation s^ restricts to a nilpotent linear 

mapping of the C linear span of {xi,. . . , xn}, and f is an invariant of the associated 

G, action (i.e. a first integral of the associated differential equation). The G, actions 

generated by such derivations were termed Popov actions in [5], and shown there to 

be rationally triangulable. Most of these actions, however, are not triangulable. 

In this section consider a triangular equation x = (0, p(xl),q(xl,x;,)) = F(x) with 

the assumptions 

1. p and q are relatively prime, and 

2. p(0) = q(O,O) = 0. 

It is well known that the ring of polynomial first integrals is generated by 41 = xi 

and 42 = x3p(xi ) - /z(x~,x~), where h = Jo”’ q(x1, u) du. Set 43 = x2/p, and @ = 

(41, $2, $3). Note that @ is a birational mapping of C3. We use the result of Lemma 2.5 

to calculate the polynomial centralizer of F. 

Observe that 

D@(x) = 
ah 

P’X3 - ax, -q p 

P’X2 1 o 

P2 P 
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and that 

0 

D@(x)F(x) = 0 . 0 1 

With T equal to the mapping C’ -+ C3 given by (O,O, l), Lemma 2.5 shows 

that the mapping F H D@(x)-‘F(@(x)) defines an isomorphism from %,.&T) = 

{(gl,gz,g3):gi E Ch,x2)) to %atP’). 

A computation reveals that 

1 0 0 

P’X2 
m(x)-’ = p O P . 

i 1 * -j 4 

Thus every element of the polynomial centralizer of F has the form 

(s”l,&,&> = 
P/(X1) 

gl(X1,~2),P(Xl)x2g1(X1,~2)+P(X1)g3(X1.~2),* 
> 

. 

Here the gi may a priori be rational functions. 

(*I 

Lemma 4.1. (1) Zfe = (&,@2,&) lies in %&l(F), then x1 divides &. 
(2) Zf 6 has strictly polynomial pow, then gl = 0. 

Proof. It &ices to prove the first assertion, since xi will then have been shown to 

be a semi-invariant, hence a first integral of d. 

From (*) we know that gl = gi(xi, 42) and gi is therefore a polynomial. Con- 

sequently, we deduce from (*) that gs = r/s where r = Y(XI, $9) and s = s(xt ) are 

relatively prime polynomials. Write p(xl) = xTf~(xl), where n > 1 by hypothesis. Again 

(*) shows that 

P’h b2w + P2(Xl )y = P@l Is&. (**I 

Thus s divides p2(x1). Write s = xys” with i(O) # 0. 

Assume that xi does not divide &. Then the highest powers of xi dividing p’x2sgl 
and p2r are x~+“-‘, xf”, respectively, while x;+~ divides psg2. These conditions and 

(**) show that m = n + 1 and therefore (**) reduces to 

(n~+xl~‘)~x2g1(X1,~2) + j2r =~l~i%hx2~x3). (* * *) 

Recall that 42 = x3 p(xi ) - h(xl,xz) where h = s: q(x1, u) du, and that p(0) = 
q(0, 0) = 0. Since p and q are relatively prime, 4(0,x2) has positive degree and therefore 

the degree of h* = h(O,x2) is greater than one. Evaluate (* * *) at xi = x3 = 0 to obtain 

cuc2gi(O, h*) + fir(O, h*) = 0, with CI and p nonzero constants. This places x2 E C(h*), 
which is impossible. 0 
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Theorem 4.2. Let i = F(x) be triangular, with a stationary point at the origin, and 

x1, cjz the generators of the ring of polynomial$rst integrals described above. For any 

bivariate polynomial a(u, v), the d@erential equation i = a(~,, &)F(x) = p(x)F(x) 

is nontriangulable if &s/au # 0. 

Proof. Suppose that e E V,,Ol(@‘), and that 6 has strictly polynomial flow. According 

to Lemma 2.4 then, [e,F] = 0 and Z+(p) = 0. From Lemma 4.1 we obtain & = 

(O,&,&), so that x1 is a first integral for i = G(x). The calculation 

yields L&42) = 0. 

The calculation @x) = D@(x)-‘G(@(x)) yields (with p = p(xl), gi = gi(xl,&)) 

C? = (0, pg3,(l/p)g2 + q(xI,xz)g3), which we write as g2(0,0, l/p) + g3F. Since $2 is 

a first integral of X = F(x) and 42 = p(xl )x3 - h(xl ,x2) we obtain 0 = L&&) = 

g2(xl,&). In particular, the elements of C&p&F) which have strictly polynomial flow 

are all of the form &xl, &)F for p E C[u, v]. Since the flow of every such centralizer 

element has a stationary point (namely zero), Lemma 2.6 shows that f = p(x)F(n) is 

not triangulable. 0 

Using other methods, Daigle obtained essentially the same result in [3]. In the ter- 

minology therein, a derivation 6 of C[X] has corank j provided i is the largest inte- 

ger for which C” has a coordinate system { ul, . . . , u,} with {u,, . . . , vi} in the kernel 

of 6. The rank of 6 is then n-j. Daigle’s hypothesis is that the triangular derivation F 

have rank two on k[X], where X = k3 and k is any field of characteristic 0. For k = C 

it is known that any rank two triangular vector field on C3 has a stationary point, since 

fixed point free triangular G, actions on complex three space are conjugate to transla- 

tions [ 111, and therefore have rank 1. In a very recent preprint, Freudenburg has given 

an example of a rank three derivation of the polynomial ring in three variables whose 

associated G, action has stationary points. 

5. Examples 

The methods of the previous sections are applied to show that none of the non Popov 

polynomial vector fields i = (0,x,(x,’ - 2x1x3),x; +x2(x; - 2x1~3)) are triangulable for 

n 2 0. The case n = 1 was considered by Daigle and Freudenburg [4]. These examples 

are noteworthy, since their sets of stationary points are finite unions of lines rather than 

hypersurfaces as in previously known nontriangulable vector fields. For the record, and 

future use, the ring of polynomial first integrals for this vector field is generated over 

C by x1 and -x7x2 + i(xlx3 - +x;)~. These are easily shown to be first integrals, and 

the algorithm in [8] shows that they generate. 

Consider the equation i = F*(x) E (0, x?,x~) with m > 1. The ring of invariants of 

the associated G, action is generated by XI and 42 = ~7x3 - x,2/2. 
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As a module over C[xi,&], Wr,&‘*) is generated by (O,O, l), F*, and (X~,FKXZ, 

mxs). To see this, observe that with Y(x) denoting the birational mapping (xi, &,xz/ 

xy), we have DY(x)F*(x) = (O,O, 1) = T(x). Thus the mapping G H DY(x)-‘G(Y 

(x)) defines an isomorphism from 59&T) to Vmt(F*). A basis for the former as a vec- 

tor space over the field of invariant rational functions is given by { (0, 1, 0), (0, 0, 1 ), (1, 0, 

0) + (242/xi)(O,l,O)}. Applying the isomorphism, and clearing denominators, yields 

the desired generating set for the module of polynomial centralizer elements. 

Consider the vector field f = F(x) = (O,xi(xixs - x22/2),$ + ~~(~1x3 - x22/2)). 

Observe that G(x) = (0,x1 ,x2) lies in the centralizer of F and that the birational 

mapping @p(x) = (xi,xixs - x,2/2, x2/x1 ) straightens G in the sense that D@(x)G(x) = 

(O,O, 1). Moreover, D@(x)F(x) = (0,x, “+‘,O)+(xlxs -x~/2)(0,0,1) = F*(@(x)), where 

F*(x) = (0,x7+‘,x2). 

Since @ is birational, we obtain as above an isomorphism from %9,&F*) to V&F). 

Applying this isomorphism to the generating set of polynomial centralizers for F* 

found above (with m = n + 1) we obtain the basis {G(X), F(x),K(x) = (l/xi )(x:, (n + 

2).xlx2,nxix3 + ((3 + n)/2)x,)} for g&F) as a vector space over the associated field 

of invariant rational functions. In particular, every polynomial centralizer element H 

of F can be expressed as 

H = @&)(&(n + 2)xix2,Wxs + ((3 +4/2)x2) 

+ ~(xl,$2)(o,xl(xlx3 - ;x;),x; +x2(x1x3 - ix,‘)) 

+ Y(xl,$2)(o,xl,x2) 

with or,p, y bivariate rational functions, and h(x) = --x:x2 + i(xix3 - ;x;)~. 

It will be seen that any such H, for which i = H(x) has strictly polynomial flow, will 

necessarily have a stationary point. Lemma 2.6 will then show that F is nontriangulable. 

Since H is polynomial, xfcl is a polynomial, hence a = i/x: for some polynomial 

first integral &. In fact, we will show that d is divisible by xi, so that H = (xlh;, h2, h3). 

For H to have strictly polynomial flow however, & = 0 (e.g. Remark 2.1). 

Again using the fact that H is polynomial, we see that (&/xt)[(n +2)x1x; - nx:xs - 

((n + 3md1 - B4 +' is a polynomial. Clearing denominators and cancelling like 

powers of xl yields E(x,,1,62))[((n + 1)/2)x$ - nxlx3] - fi(xl,&) = xlp for some 

polynomial p. 

Evaluate at xi = 0, to obtain in 

l Case n > 0, Z(O,x$‘8)(((n + 1)/2)x:) - /?(O,xi/8) = 0. Unless @(O,*) = 0, i.e. 

unless xi divides d, we obtain the absurdity that xz E C(x,“). 

l Case 12 = 0, by a similar argument, that unless i(O,*) = 0, we have the absurdity 

x; E C(x2 - x98). 

Thus any element of GfZpol(F) that has strictly polynomial flow, must be of the form 

H = P(xi,~2)(O,xic,x7 +XZC) +Y(xI,~~~)(O,X~,X~), with c =x1x3 - ix:, and /I and y 
rational functions. 

However, p and y are in fact polynomials, and this suffices for our purposes. Indeed, 

assuming this assertion, if n > 0, then the line x1 = x2 = 0 consists of stationaq points 
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for the flow determined by H, so that x = F(x) is not triangulable. If n = 0, evaluate 

H at xl = 0 to obtain H(O,x~,xj) = (O,O,/?(O,x$3)(1 -x~/2)+y(O,x~/8)~2). The third 

coordinate, as a polynomial in x2, cannot be a non zero constant, since the degree of the 

first summand is congruent to 3 mod 4, and the second summand has degree congruent 

to 1 mod4. For any root Y of this polynomial, the line xl = 0, x2 = r consists of 

stationary points for the flow determined by H. 

To see that /3 and y are polynomials, first note that xz(second coordinate of H) - 
xl(third coordinate of H) = CC;“/? w tc h’ h is a polynomial. Write fl = p/x;” so that the 

second (polynomial) coordinate in H becomes (b/xp)c + xl y. We obtain cp + x1” y = 

x;Q for some polynomial Q. In particular, x;+ly = 7, a polynomial, and 

c/I+ 7 =x;Q. (*) 

If n > 0, evaluate (*) at x1 = 0 to obtain -&O, $xz)xi + y(O, ix,“) = 0. Unless both 

&O,Z) and y(O,z) are the zero polynomial in z, we obtain the contradiction xz E C(x,“). 

Thus x1 divides b and xyp is a polynomial. 

The third coordinate of H shows that xz(c/I+y) is a polynomial. But the denominators 

of both /I and y are at worst powers of xl, so that c/I + y is a polynomial. Writing 

/I = b/x; and y = gJxi with polynomials b and g, neither of which is divisible by x1, 

we obtain one of the relations cb + xj g = x/Q or xi cb + g = x{Q. Evaluation at x1 = 0 

and an argument as in the previous paragraph show that s = t = 0. 

The case n = 0 is handled similarly. Since x2 (second coordinate of H) -XI (third 

coordinate of H) is a polynomial, we obtain p = B/x1 and y = y/xl. The third 

coordinate of H shows that (1 +xzc)B +x2 y = xlQ for some polynomial Q, so that if 

x1 divides B (i.e. /I is a polynomial), then y is a polynomial. Evaluation at x1 = x2 = 0 

yields 

Unless p(O,z) is the zero polynomial, this last equation places (1 - kx: )/x2 in the field 

C(-x2 + ix:), a contradiction. 

It is remarked in [4] that the proof given by Daigle and Freudenburg can be modified 

to show nontriangulability if n is not a multiple of 3. 

It should be noted that whenever X = F(x) and X = G(x) have strictly polynomial 

flows, [F, G] = 0, and p is a first integral of G, then x = F(x)+p(x)G(x) will have 

strictly polynomial flow. This seems to be the appropriate generalization of the Daigle- 

Freudenburg examples to arbitrary dimension. 

In view of the results in Section 4 the following conjecture for C3 seems reasonable. 

Let ~2 = G(x) be triangular with jirst integrals generated by x1 and 42. Let o(u, v) 
be a polynomial such that &/au # 0, and let z be any polynomial in one variable. 
Then 

i = C&O, 6~ )> + +I, $2 Mx) 

is not triangulable provided that G has stationary points. 
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The condition on (T is obviously necessary while the condition on G is necessary 

since otherwise G can be straightened to (0, 0,l) by a polynomial automorphism [4, 

Corollary 3.31 and triangulability follows easily. 

In principle, a proof of the above conjecture should be possible using the same 

strategy as in the DaigleFreudenburg example, since a birational map transforming 

the given vector field into a constant one can be obtained. The technical difficulties 

increase however, and it seems likely that some nonelementary arguments are required. 
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